Rev. #: 0.0 Date: 12/01/97 Page: 1 of 12 ## **REGION I, EPA-NEW ENGLAND** # DRAFT STANDARD OPERATING PROCEDURE FOR SAMPLING FIELD TED 82 ## U.S. EPA-NEW ENGLAND Region I Quality Assurance Unit Staff Office of Environmental Measurement and Evaluation Prepared by: Alan W Zeterson Date: 12/30/97 **Quality Assurance Chemist** Reviewed by: Andrew Seliveau Date: 12/30/97 **Senior Technical Specialist** Approved by: Sancy Sarmakian Date: 12/30/97 **Branch Chief** Rev. #: 0.0 Date: 12/01/97 Page: 2 of 12 ## Region I, EPA New England ## Standard Operating Procedure for Sampling Concrete in the Field ## **Table of Contents** | 1.0 | Scope and Application | 3 | |------|---|--------| | 2.0 | Method Summary | 3 | | 3.0 | Health and Safety | 4 | | 4.0 | Interferences and Potential Problems | 4 | | 5.0 | Equipment and Supplies | 4 | | 6.0 | Sample Containers, Preservation, and Storage | 5 | | 7.0 | Procedure | 5
6 | | 8.0 | Field Documentation | 8 | | 9.0 | Quality Assurance and Quality Control (QA/QC) 9.1 Equipment Blanks 9.2 Field Duplicates 9.3 Laboratory Duplicates 9.4 Matrix Spike/Matrix Spike Duplicate Samples 9.5 Performance Evaluation Samples 9.6 Data Verification and Validation 9.7 Audits | | | 10.0 | References | 12 | Rev. #: 0.0 Date: 12/01/97 Page: 3 of 12 #### Region I, EPA New England Standard Operating Procedure for Sampling Concrete in the Field #### 1.0 Scope and Application The following Standard Operating Procedure (SOP) describes a concrete sampling technique which uses an impact hammer drill to generate a uniform, finely ground, powder which is easily homogenized, extracted and analyzed. This procedure is primarily geared at providing enough sample for one or two different analyses at a time. That is, the time required to generate sufficient sample for a full sweet of analyses may be impractical. The concrete powder is suitable for all types of environmental analyses, with the exception of volatile compounds, and may be analyzed in the field or at a fixed laboratory. This procedure is applicable for the collection of samples from concrete floors, walls, and ceilings. The impact hammer drill is far less labor intensive than previous techniques using coring devices, or hammers and chisels. It allows for easy selection of sample location and sample depth. Not only can the project planner control the depth to sample into the concrete, from surface samples (0 - ½ inch) down to a core of the entire slab, but the technique can also be modified to collect samples at discrete depths within the concrete slab. Another issue with concrete sampling is the fact that the amount of time spent drilling translates into the weight of sample produced. Thus, to maximize sampling time, it is important to know the minimum amount of sample required for each analysis. To do this, the project planner should take the following steps: 1) Use the Data Quality Objective (DQO) process and familiarity with the site to develop the objectives of the sampling project and the depth(s) of sample to be collected. 2) Review the site history and any previous data collected to determined possible contaminants of concern. 3) Establish the action levels for those possible contaminants and determine the appropriate analytical methods (both field and/or fixed laboratory) to meet the DQOs of the project. 4) Based on the detection limits of these methods, determine the amount of sample required for each analysis and the total sample weight require for each sample location (including quality control samples). As with any environmental data collection project, all aspects of a concrete sampling episode should be well thought out, prior to going out in the field, and thoroughly described in a Quality Assurance Project Plan (QAPP). The QAPP should clearly state the DQOs of the project and document a complete Quality Assurance/Quality Control program to reconcile the data generated with the established DQOs. For more information on these subjects, refer to EPA documents QA/R-5, <u>EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations</u>, and QA/G-4, <u>Guidance for the Data Quality Objective Process</u>. #### 2.0 Method Summary A one-inch diameter carbide drill bit is used in a rotary impact hammer drill to generate a fine concrete powder suitable for analysis. The powder is placed in a sample container and homogenized for field or fixed laboratory analysis. The procedure can be used to sample a single depth into the concrete, or may be modified to sample the concrete at distinctly different depth zones. The modified depth sampling procedure is designed to minimize any cross contamination between the sampling zones. If different sampling depths are required, two different diameter drill bits and a vacuum sampling apparatus are employed. Rev. #: 0.0 Date: 12/01/97 Page: 4 of 12 #### 3.0 Health and Safety Eye and hearing protection are required at all times during sample drilling. A small amount of dust is generated during the drilling process. Proper respiratory protection and/or a dust control system must be in place at all times during sampling. #### 4.0 Interferences and Potential Problems Since this sampling technique produces a finely ground uniform powder, physical matrix effects from variations in the sample consistency (i.e., particle size, uniformity, homogeneity, and surface condition) are minimized. Matrix spike analysis of a sample is highly recommended to monitor for any matrix related interferences As stated in Section 1.0 above, this sampling procedure is not recommended for volatile organic compound (VOC) analysis. The combination of heat generated during drilling and the exposure of a large amount of surface area will greatly reduce VOC recovery. If low boiling point semi-volatile compounds (i.e., naphthalene) are being analyzed, then the drill speed should be reduced to minimize heat build-up. #### 5.0 Equipment and Supplies ## 5.1 Single Depth Concrete Sampling - 5.1.1 Rotary impact hammer drill - 5.1.2 1-inch diameter carbide drill bits - 5.1.3 Stainless steel scoopulas - 5.1.4 Stainless steel spoonulas (for collecting sample in deeper holes, >2-inches) - 5.1.5 Rectangular aluminum pans (to catch concrete during wall and ceiling sampling) - 5.1.6 Gasoline powered generator (if alternative power source is required) #### 5.2 Multiple Depth Sampling (in addition to all the above) - 5.2.1 ½ inch diameter carbide drill bits - 5.2.2 Vacuum/sample trap assembly (see Section 7.2 and Figure 1) - 5.2.2.1 Vacuum pump - 5.2.2.2 2-hole rubber stopper - 5.2.2.3 Glass tubing (to fit stopper) - 5.2.2.4 Large glass test tubes, or Erlenmeyer flasks, for sample trap (several are suggested) - 5.2.2.5 Polyethylene tubing for trap inlet (Tygon tubing may be used for the trap outlet) - 5.2.2.6 Pasture pipets - 5.2.2.7 Pipe cleaners - 5.2.2.8 In-line dust filter (glass fiber filter, or equivalent) #### 6.0 Sample Containers, Preservation, and Storage Concrete samples must be collected in glass containers for organic analyses, and may be collected in either glass or plastic containers for inorganic analyses. In general, a 2-ounce sample container with Rev. #: 0.0 Date: 12/01/97 Page: 5 of 12 Teflon-lined cap (wide-mouth jars are preferred) will hold sufficient volume for most analyses. A 2-ounce jar can hold roughly 90 grams sample. Note, samples which require duplicate and/or matrix spike/matrix spike duplicate analyses may require a larger sample container, or additional 2-ounce sample containers. Organic samples are to be shipped on ice and maintained at 4° C ($\pm 2^{\circ}$ C) until the time of extraction and analysis. Inorganic samples may be shipped and stored at room temperature. Refer to 40 CFR Part 136 for guidelines on analysis holding times. To maintain sample integrity, chain-of-custody procedures must be implemented at the time of sampling to 1) document all sample locations and associated field sample identification numbers, 2) document all quality control samples taken, including field duplicates, split samples for confirmatory analyses, and PE samples, and 3) document the transfer of field samples from field sampler to field chemist or fixed laboratory. #### 7.0 Procedure #### 7.1 Single Depth Concrete Sampling Lock a 1-inch diameter carbide drill bit into the impact hammer drill and plug the drill into an appropriate power source. (A gasoline generator will be needed if electricity is not available.) For easy identification, sample locations may be pre-marked using a crayon or a non-contaminating spray paint. (Note, the actual drilling point must not be marked.) Depending on the appearance of the sample location, or the objectives of the sampling project, it may be desired to wipe the concrete surface with a clean dry cloth prior to drilling. All sampling decisions of this nature should be noted in the sampling logbook. Begin drilling in the designated location. Apply steady even pressure and let the drill do the work. Applying too much pressure will generate excessive heat and dull the drill bit prematurely. The drill will provide a finely ground concrete powder that can be easily collected, homogenized and analyzed. Having several decontaminated impact drill bits on hand will help expedite sampling when numerous sample locations are to be drilled. #### Sample Collection A ½-inch deep hole (using a 1-inch diameter drill bit) generates about 10 grams of concrete powder. Based on this and the action levels for the project, determine the sampling depth, and/or the number of sample holes to be composited, to generate sufficient sample volume for all of the required analyses. (Note, with the absorbency of concrete, a ½-inch deep hole can be considered a surface sample.) A decontaminated stainless steel scoopula can be used to collect the sample. The powder can either be collected directly from the surface of the concrete and/or the concrete powder can be scraped back into the hole and the less rounded back edge of the scoopula can be used to collect the sample. For holes greater than 2-inches in depth, a stainless steel spoonula will make it easier to collect the sample from the bottom of the hole. To ensure collection of a representative sample when multiple analyses are required, a concrete sample should always be collected and homogenized in a single container and then divided up into the individual containers for the various analyses or split samples. This is particularly important when sample holes are deep, or when several holes are drilled adjacent to each other to form a sample composite. Rev. #: 0.0 Date: 12/01/97 Page: 6 of 12 #### Wall and Ceiling Sampling A team of two samplers will be required for wall and ceiling sampling. The second person will be needed to hold a clean catch surface (i.e., an aluminum pan) below the drill to collect the falling powder. For wall samples, a scoopula, or spoonula, can be used to collect remaining concrete powder from within the hole. For ceiling holes, it may be necessary to drill the hole at an angle so the concrete powder can fall freely in the collection plan (and avoid falling on the drill). Another alternative might be to use the chuck-end of the drill bit and punch a hole through the center of the collection pan. The drill bit is then mounted through the pan and into the drill. Thus, the driller can be drilling straight up while the assistant steadies the pan to catch the falling dust. As a precaution, it may be advantageous to tape a piece of plastic around the drill, just below the chuck, to avoid dust contaminating the body of the drill and entering the mechanical vents. (Note, the plastic should deflect dust from the drill, but be loose enough underneath to allow for proper ventillation.) #### 7.2 Multiple Depth Concrete Sampling The above method for concrete sampling can also be used to collect samples from different depths within the concrete. To do this, two different sized drill bits (i.e., ½ inch and 1 inch) and a simple vacuum pump with a vacuum trap assembly is required (see Figure 1). First, the 1 inch drill bit is used to drill to the first level and the concrete sample is collected as described in Section 7.1. The vacuum pump is then turned on and the hole is cleaned out using the vacuum trap assembly. The drill bit is then changed to the ½ inch bit and the next depth is drilled out (the ½ inch bit is used to avoid contact with the sides of the first hole). A clean tube or flask is placed on the vacuum trap, and the sample from the second drilling is collected. To go further, the 1 inch drill is used to open up the hole to the second level, the hole is cleared, and then the ½ inch drill is used again to go to a third level, etc. Note, the holes and concrete surface should be vacuumed thoroughly to minimize any cross-contamination between sample depths. #### Vacuum Trap Design and Clean-out The trap presented in Figure 1 is a convenient and thorough way for collecting and removing concrete powder from drilled holes. The trap system is designed to allow for control of the suction from the vacuum pump and easy trap clean-out between samples. Note, by placing a hole in the inlet tube (see Figure 1), a finger on the hand holding the trap can be used to control the suction at the sampling tip. Thus, when this hole is left completely open, there will be no suction, and the sampler can have complete control over where and what to sample. To change-out between samples the following steps should be taken: 1) The pasture pipet and piece of polyethylene tubing at the sample inlet should be replaced with new materials, 2) the portion of the rubber stopper and glass tubing that was in the trap should be wiped down with a clean damp paper towel (wetted with deionized water) and then dried with a fresh paper towel, 3) a clean pipe cleaner should be drawn through the glass inlet tube to remove any concrete dust present, and 4) the glass tube or flask used to collect the sample should swapped out with a clean decontaminated sample trap. Having several clean tubes or flasks on hand will facilitate change-out between samples. #### 7.3 Decontamination Procedure Necessary supplies for decontamination include: two small buckets, a scrub brush, potable water, deionized water, a squirt bottle for the deionized water, and paper towels. The first bucket contains a soap and potable water solution, and the second bucket contains just potable water. Place all used drill bits and utensils in the soap and water bucket. Scrub each piece thoroughly using the scrub brush. Note, the concrete powder does cling to the metal surfaces, so care should be taken during this step, especially with the twists and curves of the drill bits. Next, rinse each piece in the potable water bucket, and follow with a deionized water rinse from the squirt bottle. Place the deionized water rinsed pieces on clean paper towels and individually dry and inspect each piece. Note, all pieces should be dry prior to reuse. #### **8.0** Field Documentation All Site related documentation and reports generated from concrete sampling should be maintained in the central Site file. If personal logbooks are used, legible copies of all pertinent pages must be placed in the Site file. #### 8.1 Field Logbooks All field documentation should be maintained in bound logbooks with numbered pages. If loose-leaf logsheets are used to document site activities, extra care should be taken in keep track of all logsheets. The original copy of all logsheets should be maintained in the central Site file. Note, all sample locations must be documented by tying in their location to a detailed site map, or by using two or more permanent landmarks. The following information should be documented in the field logbooks: - Site name and location, - EPA Site Manager, - Name and affiliation of field samplers (EPA, Contractor company name, etc.), - Sampling date, - Sample locations and IDs, - Sampling times and depths, and - Other pertinent information or comments Rev. #: 0.0 Date: 12/01/97 Page: 8 of 12 ## 8.2 Sample Labeling and Chain-of-Custody #### 8.2.1 Sample Labels Sample labels will be affixed to all sample containers. Labels must contain the following information: - Project name, - Sample number, and/or location - Date and time of sampling, - Analysis, - Preservation, and - Sampler's name. #### 8.2.2 Chain-of-Custody All samples must be traced from collection, to shipment, to laboratory receipt and laboratory custody. The Chain-of-Custody (COC) Record is a multi-part form that is initiated as samples are acquired and accompanies a sample (or group of samples) as they are transferred from person to person. The COC form is signed by all individuals responsible for sampling, sample transport, and laboratory receipt. (Note, overnight deliver services, often used with sample transport, are exempt from having to sign the COC form. However, copies of all shipping invoices must be kept with the COC documentation.) One copy of the COC is retained by the field sampling crew, while the original (top, signed copy) and remaining carbonless copies are placed in a zip-lock bag and taped to the inside lid of the shipping cooler. If multiple coolers are required for a sample shipment to a single laboratory, the COC need only be sent with one of the coolers. The COC should state how many coolers are included with the shipment. All sample shipments to different laboratories require individual COC forms. The original COC form accompanies the samples until the project is complete, and is then kept in the permanent project file. A copy of the COC is also kept with the project manager, the laboratory manager, and attached to the data package. #### 8.2.3 <u>Custody Seal</u> The Custody seal is an adhesive-backed label which is also part of the chain-of-custody process. The custody seal is used to prevent tampering with the samples after they have been collected in the field and sealed in coolers for transit to the laboratory. The Custody seals are signed and dated by a sampler and affixed across the opening edges of each cooler containing samples. Clear packing tape should be wrapped around the cooler, and over the Custody seal, to secure the cooler and avoid accidental tampering with the Custody seal. #### 9.0 Quality Assurance and Quality Control (QA/QC) A solid QA/QC program is essential to establishing the quality of the data generated so that proper project decisions can be made. The following are key quality control elements which should be incorporated into a concrete sampling and analytical program. #### 9.1 Equipment Blanks Rev. #: 0.0 Date: 12/01/97 Page: 9 of 12 An equipment blank should be performed on decontaminated drill bits and collection utensils at a frequency of 1 per 20 samples or 1 per day, whichever is greater. To prepare the equipment blank, place the decontaminated drill bit and utensils in a large clean stainless steel bowl. Pour sufficient deionized water into the bowl to fill all of the required sample containers. Next, stir the drill bit and utensils in the bowl with a clean utensil to thoroughly mix the blank. Finally, decant off the equipment blank into the sample containers. Note, a clean funnel may help to pour off the equipment blank into the containers. #### 9.2 Field Duplicates Field duplicates are samples collected adjacent to each other (collocated) at the same sample location (not two aliquots of the same sample). Field duplicates not only help provide an indicator of overall precision, but measure the cumulative effects of both the field and analytical precision, and also measure the representativeness of the sample. Field duplicates must be prepared and analyzed at a frequency of 1 per 20 samples or 1 per non-related concrete matrix, whichever is greater. An example of a non-related concrete matrix might be the investigation of two different types of chemical spills. Calculate the Relative Percent Difference (RPD) between the sample and its duplicate using Equation 1. $$RPD = \frac{|S - D|}{\underbrace{(S + D)}_{2}} \times 100$$ Equation 1 Where: S = Original sample result D = Duplicate sample result The following general guidelines have been established for field duplicate criteria: - If both the original and field duplicate values are ≥ practical quantitation limit (PQL), then the control limit for RPD is ≤50%, - If one or both values are < PQL, then do not assess the RPD. If more rigorous field duplicate criteria are needed to achieve project DQOs, then that criteria should be documented in the project QAPP. If the field duplicate criteria specified above are not met, then flag that target element with an "*" on the final report for both the original and field duplicate samples. Report both the original and field duplicate analyses; do not report the average. Field duplicate samples should should be indicated on the sample ID. For example, the sample ID can contain the the suffix "FD". #### 9.3 Laboratory Duplicates Laboratory duplicates are two aliquots of the same sample that are prepared, homogenized and analyzed in the same manner. (Note, proper sample homogenization is critical in producing meaningful results.) The precision of the sample preparation and analytical methods is determined by performing a laboratory duplicate analysis. Laboratory duplicates can be prepared in the field and submitted as blind samples, or Rev. #: 0.0 Date: 12/01/97 Page: 10 of 12 the laboratory can be requested to perform the laboratory duplicate analysis. In the case of laboratory prepared duplicates, the field sampling team must be sure to provide sufficient sample volume. Laboratory duplicates must be prepared and analyzed at a frequency of 1 per 20 samples or 1 per non-related concrete matrix, whichever is greater. Calculate the RPD between the sample and its duplicate using Equation 1. The following general guidelines have been established for laboratory duplicate criteria: - If both the original and laboratory duplicate values are \geq PQL, then the control limit for RPD is \leq 25%. - If one or both values are < PQL, then do not assess the RPD. If duplicate criteria are not met, then flag that target element with an "*" on the final report for both the original and duplicate samples. Report both the original and duplicate analyses; do not report the average. #### 9.4 Matrix Spike/Matrix Spike Duplicate Samples Matrix spike/matrix spike duplicate samples (MS/MSDs) are two additional aliquots of a sample which are spiked with the appropriate compound(s) or analyte(s) of concern and then prepared and analyzed along with the original sample. (Note, proper sample homogenization, prior to spiking, is critical in producing meaningful results.) MS/MSDs help evaluate the effects of sample matrix on the analytical methods being used. The field sampling team must provide sufficient sample volume such that the field or fixed laboratory can prepare and analyze MS/MSDs at a frequency of 1 per 20 samples or 1 per non-related concrete matrix, whichever is greater. Rev. #: 0.0 Date: 12/01/97 Page: 11 of 12 Calculate the recovery of each matrix spike compound or analyte using Equation 2. $$MSR = \frac{SSR - SR}{SA} \times 100$$ Equation 2 Where, MSR = Matrix Spike Recovery, SA = Spike Added SSR = Spiked Sample Result, SR = Sample Result Calculate the relative percent difference (RPD) between the recoveries of each compound or analyte in the matrix spike and matrix spike duplicate using Equation 3. $$RPD = \frac{|MSR - MSRD|}{(MSR + MSRD)} \times 100$$ Equation 3 Where, MSR = Matrix Spike Recovery MSRD = Matrix Spike Duplicate Recovery ## 9.5 Performance Evaluation Samples In accordance with the <u>EPA Region I Performance Evaluation Program Guidance</u>, performance evaluation (PE) samples should be submitted for each type of analysis to be performed in the field or by the fixed laboratory performing full protocol EPA methods. PE samples provide information on the quality of the individual data packages. PE samples are certified standard reference materials (SRMs) from a source other than that used to calibrate the instrument. If both field and fixed laboratories are being used to analyze samples, at least one solid PE sample should undergo both field analysis and confirmatory full protocol EPA method analysis to facilitate data comparability. A copy of the certified values for the SRM must be submitted with the final data packages to facilitate data evaluation. #### 9.6 Data Verification and Validation All field data and supporting information (including chain-of-custody) that is collected during a concrete sampling episode should be verified daily, by a person other than that performing the work, to check for possible errors. During the project planning process, a plan for data validation should be established for all data, both for field and fixed laboratories. All data must be validated to assure that it is of a quality suitable to make project decisions. For help in developing a data validation program refer to Region I, EPA New England, Data Validation Functional Guidelines for Evaluating Environmental Analyses. Rev. #: 0.0 Date: 12/01/97 Page: 12 of 12 #### 9.7 Audits #### 9.7.1 Internal Audits As part of the Quality Assurance/Quality Control Program for any sampling project, a series of internal audit checks should be instituted to monitor and maintain the integrity of the sample collection process. Timely internal reviews will insure that proper sampling, decontamination, chain-of-custody and quality control procedures are being followed. Also, the internal audit review is there to monitor any corrective actions taken, and/or institute corrective actions that should have been taken and were not. All corrective actions taken must be documented in an appropriate logbook, and if any corrective actions impact the final data reported, then they must also be documented in the final report narrative. The results of all internal audits must be documented in a report, and copies of the report issued to the Project Manager and the Quality Assurance Manager. The original copy of any audit report must remain with the main project file and be available for review. #### 9.7.2 External Audits The Agency reserves the right to perform periodic field audits to ensure compliance with this SOP. #### 10.0 References - 1) Guidance for the Data Quality Objective Process, QA/G-4, EPA/600/R-96/055, September 1994. - 2) <u>EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations</u>, QA/R-5, Interim Final, October 1997. - 3) <u>Guidance for the Preparation of Standard Operating Procedures for Quality-related Operations</u>, QA/G-6, EPA/600/R-96/027, November 1995. - 4) Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses, July 1996. - 5) EPA Region I Performance Evaluation Program Guidance, July 1996. - 6) U.S. EPA Code of Federal Regulations, 40 CFR, Part 136, Appendix B, Revised as of July 1995.